Shannon Wavelets for the Solution of Integrodifferential Equations
نویسندگان
چکیده
منابع مشابه
Shannon Wavelets for the Solution of Integrodifferential Equations
Shannon wavelets are used to define a method for the solution of integrodifferential equations. This method is based on 1 the Galerking method, 2 the Shannon wavelet representation, 3 the decorrelation of the generalized Shannon sampling theorem, and 4 the definition of connection coefficients. The Shannon sampling theorem is considered in a more general approach suitable for analysing function...
متن کاملNumerical solution of the Fredholm-Volterra integro-differential equations by the Shannon wavelets
This paper is concerned with obtaining the approximate solution of Fredholm-Volterra integro-differential equations. Properties of the Shannon wavelets and connection coefficients are first presented. We design a numerical scheme for these equations using the Galerkin method incorporated with the Shannon wavelets approximation and the connection coefficients. We will show that using this techni...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولBernoulli Wavelets Method for Solution of Fractional Differential Equations in a Large Interval
In this paper, Bernoulli wavelets are presented for solving (approximately) fractional differential equations in a large interval. Bernoulli wavelets operational matrix of fractional order integration is derived and utilized to reduce the fractional differential equations to system of algebraic equations. Numerical examples are carried out for various types of problems, including fractional Van...
متن کاملWavelets for the fast solution of boundary integral equations
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(NJ) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(NJ) den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2010
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2010/408418